nach oben
Meine Merkliste
Ihre Merklisteneinträge speichern
Wenn Sie weitere Inhalte zu Ihrer Merkliste hinzufügen möchten, melden Sie sich bitte an. Wenn Sie noch kein Benutzerkonto haben, registrieren Sie sich bitte im Hanser Kundencenter.

» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.
Ihre Merklisten
Wenn Sie Ihre Merklisten bei Ihrem nächsten Besuch wieder verwenden möchten, melden Sie sich bitte an oder registrieren Sie sich im Hanser Kundencenter.
» Sie haben schon ein Benutzerkonto? Melden Sie sich bitte hier an.
» Noch kein Benutzerkonto? Registrieren Sie sich bitte hier.

« Zurück

Ihre Vorteile im Überblick

  • Ein Login für alle Hanser Fachportale
  • Individuelle Startseite und damit schneller Zugriff auf bevorzugte Inhalte
  • Exklusiver Zugriff auf ausgewählte Inhalte
  • Persönliche Merklisten über alle Hanser Fachportale
  • Zentrale Verwaltung Ihrer persönlichen Daten und Newsletter-Abonnements

Jetzt registrieren
Merken Gemerkt
27.01.2016

Ein Sensor, drei Dimensionen

Hochpräzise Lasermesstechnik für die Komponentenfertigung

Optische Prüfung hypoidverzahnter Bauteile mit einem Laserscanner (©TU Wien)

Wer Präzisionsprodukte herstellt, etwa mechanische Komponenten mit speziellen Geometrien, der muss Objekte mit hoher Genauigkeit dreidimensional erfassen können. Um festzustellen, ob die dreidimensionale Form exakt stimmt, entwickelt Prof. Georg Schitter mit seinem Team am Institut für Automatisierungs- und Regelungstechnik (ACIN) an der TU Wien nun neuartige 3D-Messsysteme, die auf dem Einsatz beweglicher Spiegel und Laserstrahlen beruhen. Dafür wurde am 26. Januar 2016 an der TU Wien das Christian-Doppler-Labor für Präzisionstechnologie für automatisierte In-Line Messtechnik eröffnet. Unterstützt wird das neue Labor vom Bundesministerium für Wissenschaft, Forschung und Wirtschaft (BMWFW), der Firma Atensor Engineering and Technology Systems aus Steyr und der Firma Micro-Epsilon Messtechnik aus Bayern.

„Die Entwicklung und Anwendung modernster Messtechnik ermöglicht die Entstehung immer präziserer und ausgereifterer Produkte. Die wissenschaftliche Expertise der TU Wien und die Praxiserfahrung der involvierten Unternehmen ermöglichen Forschung, die sich an den Bedürfnissen des Marktes orientiert“, so Wissenschafts-, Forschungs- und Wirtschaftsminister Reinhold Mitterlehner. „Von Forschung und Innovation im Hochtechnologie-Bereich profitieren alle beteiligten Partner und langfristig auch der Standort Österreich.“

3D-Sehen für Fortgeschrittene

Prof. Georg Schitter (©TU Wien)

Wir können dreidimensional sehen, weil beide Augen leicht unterschiedliche Bilder liefern. Auch moderne Kameras kann man auf ähnliche Weise verwenden – für die hochpräzise Erfassung dreidimensionaler Formen genügt das allerdings nicht. „Wir verwenden Laser-basierte optische Sensoren, mit denen man Abstände hochauflösend messen kann“, erklärt Georg Schitter. „Mit beweglichen Spiegeln lässt man die Laserstrahlen über eine Oberfläche gleiten, damit kann das ganze Objekt Punkt für Punkt abgerastert, erfasst und am Computer analysiert werden.“ Die Genauigkeit, die sich damit erreichen lässt, ist beeindruckend: „Eine vertikale Auflösung von deutlich weniger als einem Mikrometer ist damit möglich“, sagt Schitter. Er beschäftigt sich schon seit Jahren mit solchen 3D-Messystemen, durch das neue CD-Labor kann er seine Forschung nun deutlich ausbauen.

Wenn man diese Präzision erreichen will, kann man nicht einfach fertige Bauteile kaufen und zusammenfügen. Von einzelnen mechatronischen Komponenten bis zur elektronischen Echtzeit-Regelung, von den Laserspiegeln bis zur Computersoftware – alle Komponenten müssen perfekt aufeinander abgestimmt werden. Jeder einzelne Schritt, jede Komponente wird daher im CD-Labor an der TU Wien speziell entwickelt. „Schon beim Entwurf muss man genau überlegen, wie die Systemkomponenten am besten zusammenwirken. Dadurch kann man nicht nur die Auflösung erhöhen, sondern beispielsweise auch die Geschwindigkeit und die Energieeffizienz“, erklärt Schitter.

Nicht nur die Form, sondern beispielsweise auch die Farbe von Objekten kann mit den im CD-Labor entwickelten Sensoren gemessen werden – etwa um während des Produktionsprozesses zu überwachen, ob auch wirklich exakt der richtige Farbton getroffen wurde. „Unser System soll direkt im Produktionsbetrieb eingesetzt werden und am Fließband laufend überwachen, ob die Qualität stimmt“, sagt Georg Schitter. „Mit unseren Messsystemen funktioniert das schnell, vollautomatisch und ohne direkten Kontakt.“

BMWFW fördert anwendungsorientierte Grundlagenforschung

Beweglicher Spiegel zum Scannen des Lasers für die 3D-Vermessung von Oberflächen (©TU Wien)

Als Firmenpartner konnte Georg Schitter zwei Unternehmen gewinnen, mit denen das Institut für Automatisierungs- und Regelungstechnik der TU Wien auch schon in der Vergangenheit mit großem Erfolg zusammengearbeitet hat: Atensor Engineering and Technology Systems in Steyr ist ein Kompetenzzentrum für Robotik und Roboter-gestützte Messtechnik. Micro-Epsilon ist ein Messtechnik-Produzent aus Bayern, der sich auf hochpräzise Sensoren spezialisiert hat.

Unternehmensinformation

Micro-Epsilon Messtechnik GmbH & Co. KG

Königbacher Str. 15
DE 94496 Ortenburg
Tel.: 08542 168-0
Fax: 08542 168-90

Diese Beiträge könnten Sie auch interessieren
Twitter
Neuer Fachartikel

Faltenbälge schützen Mensch und Maschine


Zum Fachartikel

Newsletter

Sie wollen immer top-aktuell informiert sein? Dann abonnieren Sie jetzt den kostenlosen Newsletter!

Hier kostenlos anmelden

Beispiel-Newsletter ansehen